
Last saved by purdy - 1 - Last printed 11/22/99 12:54 PM

Earth Observing System
Geoscience Laser Altimeter System

GLAS I-SIPS Software Delivery Package

Version 0

July, 1999

Contact:
Anita Brenner anita@icesat2.gsfc.nasa.gov
David Hancock hancock@osb1.wff.nasa.gov
Gladstone Marcus marcus@icesat2.gsfc.nasa.gov
Jeff Lee jlee@osb3.wff.nasa.gov

Last saved by purdy - 2 - Last printed 11/22/99 12:54 PM

Version 0 Delivery Package for GLAS I-SIPS Software

Version 0 Delivery Package for GLAS I-SIPS Software.. 2
Introduction... 2
Requirements for v0 Delivery.. 3
Assumptions for v0 Delivery... 4
System Design Overview .. 4
Data Management Interface Requirements .. 5
GLA00 Definition ... 6
Inconsistency between GLA00 and GLA02... 6
Initial Error Handling .. 6
Time/Record Synchronization ... 6
File Naming Conventions.. 7
Granule Size.. 7
Control File Format... 8
ANC06 Definition and Format .. 11
ANC07 Definition and Format .. 12
Fortran/Sub-ATBD Interface... 14
Fortran Subroutine Interface Mechanism... 17
Source Files .. 17

Top Level files .. 17
Lower Level Files, Libraries.. 18
libcio.a – Generic C routines for reading and writing data.................................... 18
libprod.a –F90 routines for reading and/or writing each GLA/ANC file............... 18
libcntrl.a-f90 routines for control file and interface handling 18
libfile-Generic file routines.. 19
libanc-Ancillary file routines ... 19
libtime-Misc time conversion routines... 19
liberr-Error handling routines .. 19
libplatform.a-platform-specific routines... 19
libl1a.a – L1A algorithm routines .. 19
libatm.a - Atmosphere algorithm routines ... 19
libelev.a – Elevation algorithm routines... 20
libwf.a – Waveform algorithm routines ... 20

Library Dependencies ... 21
Appendix .. 22

Directory structure (Top Level files and Libraries) .. 22

Introduction

Last saved by purdy - 3 - Last printed 11/22/99 12:54 PM

The GLAS I-SIPS software consists of a Science processing system that creates
multiple data products, A Data Preparation and handling subsystem that supports the
Science Processing system by acquiring raw, input data and user information to
perform scheduling , staging, archiving and distribution of the data products. Finally,
a set of utilities provide the capability for formatting the data products, creating
intermediate ancillary products and, generally, supporting quality control.
For Version 0 provides a minimum set of functionalities as specified in the Version 0
requirements and is intended to be the basis for development and delivery of the full
set of functionalities, to be provided as Version 1, that will satisfy all the
requirements set out in the Architecture document.

The Version 0 science processing system accomplishes the execution of 4 scenarios,
listed below as “Specific Requirements”, that are required for the software, and
depends on user provided control files to specify the execution parameters.

The data preparation and handling capability that is delivered for Version 0 consists
of ported software that performs archiving and retrieval of data using the DLT tape
media. The ported software consists of legacy code from the Version 0 DAAC known
as Archer. The software and its location are described in the document:
“Data Preparation and Handling: Ported GSFC DAAC V0 Software for Version 0
Delivery.”

Requirements for v0 Delivery

The basic requirement for version 0 is to have a framework in place that addresses all
external interfaces. We will be somewhat limited on this because of the late delivery
of the telemetry descriptions, the ATBDs, and the understanding of the "DAAC
version 0" software.

General requirements:

• All standard data products in an SCF format are produced.
• Several normal processing strings execute without errors.
• All sub ATDB version 0 interfaces are exercised.
• Processing history will be available.
• Formalization for standardized messaging and error-handling in Local ancillary

files will be incorporated
• A working version of I-SIPS archer.
• Draft documentation on using the s/w delivered.
• Software will read those ANC files which have been defined.

Specific requirements:

• Control file processing.
• Initialization file processing.
• One processing string to create GLA01 to GLA15.

Last saved by purdy - 4 - Last printed 11/22/99 12:54 PM

• One processing string that starts with a GLA05 input to produce GLA06,
12,13,14,15.

• One processing string that starts with GLA02 input and produces
GLA07,08,09,10,11.

• One processing string that starts with a GLA05 input to produce GLA06.
• Each Sub ATDB receives known data and returns known data onto associated

output product(s).
• Defined set of version 0 local ANC files.

Acceptable Requirements not fully delivered

• Handling of missing data
• True time tag conversion and alignment
• Ancillary data file inputs and outputs
• QA data and processing.
• Anc files from external sources
• Archive information

Assumptions for v0 Delivery
• There will be a 1-1 temportal correspondence between L1A and L2 GLA_SCF

files. This means that the v0 software will not use multiple files of the same File
Type for processing or reprocessing. This capability, however, will be built into
the control structures for future use and some of this functionality is already
present in the V0 release.

• All input data will be time aligned with no missing data or error data.
• Imported ANC files will not be available.
• The GLA_ANC_06 file will not be created using the Toolkit.
• GLA_SCF files will be raw data only. No header or metadata is required.
• GLA00 data will be time-aligned and all APIDs merged into a single binary file.

System Design Overview
The I-SIPS data processing system is designed to be both efficient and flexible. The
system was designed for operational flexibility considering data availability
constraints and reprocessing requirements. In order to meet these requirements, the
design of the I-SIPS data processing system is based on three software layers of
increasing intelligence. The bottom layer is composed of the implementations of
scientific algorithms, the middle layer is composed of multiple managers responsible
for the execution of the scientific algorithms and data output, and the top layer is a
main program which is responsible for data input and the execution of each manager.
The core of the I-SIPS design is a consolidation of necessary scientific algorithms.
These algorithms are published in Algorithm Theroretical Basis Documents (ATBD)
provided by the GLAS Science Team. The provided algorithms are grouped into
ATBD subsystems separated by scientific discipline. The four subsystems are: L1A,
Waveforms, Atmosphere, and Elevation. Additionally, the subsystems are designed
such that data required by each subsystem is available from a product (data file)
written by a preceding subsystem. The result of is no (or very little) data dependence
between the subsystems.

Last saved by purdy - 5 - Last printed 11/22/99 12:54 PM

Associated with the ATBD subsystem are corresponding Subsystem Managers. The
Subsystem Managers control which sub-ATBD algorithms to execute and what data
products get written. Very little intelligence is built into the Subsystem Managers
except for the order in which sub-ATBD algorithms are called and what is required to
write each data product.
Finally, surrounding the four managers is a main program that is basically a state
machine. This program uses control input to determine what data to read, what
processes to execute, and what data to write.
During the design phase, both single-program and multiple-program approaches were
considered. Advantages of the single program approach include a potentially reduced
I/O burden (dependent on the operational use of the software), less software
maintainence, and ease of configuration management. The disadvantages of this
approach are slightly more code complexity and a potential for increased memory
usage due to non-active global memory being used. The advantages of multiple
programs are simplicity and relatively reduced memory usage. The disadvantages are
an increased software maintenance burden and increased configuration management
difficulty.
By keeping the top-level code very generic and developing on the single-program
approach, the Team retains maximum development flexibility. If there is a solid
reason not to implement the I-SIPS data processing system as a single program, it will
be very easy to subset GLAS_Exec and create four independent programs. This will
allow the Team to take advantage of new information as development progresses into
prototyping and load testing with a minimum of wasted effort.
The team recognizes that there will be other task–specific software which will
interface with data created by the I-SIPS data processing system. In order to effect the
reuse of this software, the GLAS Team will implement major components and
subsystems as shared libraries. These libraries (especially the I/O library) will be as
generic as possible so they may be used without modification by both internal and
external programmers.

Data Management Interface Requirements
The design of GLAS_Exec imposes the following requirements on the GLAS Data
Management System (DMS):

• The DMS will retrieve and stage into a directory all input files necessary for the
requested execution.

• The DMS scheduler will create GLAS_Exec’s control file via a predefined recipe.
This includes the systematic naming of output files.

• The DMS scheduler will invoke the GLAS_Exec execution instance with the
control file name as an argument.

• The DMS scheduler will handle a return code from GLAS_Exec specifying either
success or failure. Additionally, if a fatal error occurs during the GLAS_Exec
initialization, text may be written to standard output.

Last saved by purdy - 6 - Last printed 11/22/99 12:54 PM

GLA00 Definition
The V0 version of GLAS_Exec is coded using a modified version of the GLA00
definition Version 2.0. The modifications are documented and were necessary due to
misalignment of data structures within the ANC_SCI Apid.

V0 GLAS_Exec will read GLA00 data which are contained in a single file of variable
length records. Data are time-aligned and delimited by WFF-designated Apids
containing the record index for the delimited data.

Inconsistency between GLA00 and GLA02
Since we did not update the other GLAxx products when we adopted the GLA00
V2.0 definitions, there is an inconsistency with the number of –1 to 10km samples. In
various places there are either 132 or 133 samples. The correct is 132. Internally,
GLA00 is now consistent. However, GLA02 has not been fixed since we froze v0 on
the definitions previously provided.

The same problem exists for the number of samples in 40km to 20km data. GLA02
uses 267, GLA00 uses 268.

Initial Error Handling
Since input file names are designated in the control file and GLAS_Error is initialized
by ANC07, GLA06 and GLAS_Error will be unavailable to the initialization and
control-file parsing portions of program execution. For this part of the run, Error
messages will be printed to standard output and error severity determined internally.
If desired, the scheduler can redirect GLAS_Error’s stdout into a log file for later
analysis. This method provides maximum flexibility for interaction between
GLAS_Exec and the scheduler in early program execution.
To do this, the global ANC06 file structure will be initialized to unit 6 and named
“stdout”. When the Control file is parsed and the specified ANC06 file is opened, the
global ANC06 will be updated accordingly.

Modules which use stdout for error handling include:
GetControl_mod
OpenFiles_mod
OpenFInFile_mod
OpenFOutFile_mod
OpenCInFile_mod
OpenCOutFile_mod

Time/Record Synchronization
GLA00 data time/record synchronization between APIDs is currently TBD.
For GLA01 and higher-level products, a RecIndex field will be used for record
synchronization. This field will be present in each GLA file record and will contain a
number that will identify each 1/sec GLAS science measurement. The current
definition is as follows:

Last saved by purdy - 7 - Last printed 11/22/99 12:54 PM

YYDDDSSSSS
where
YY= number of years from 2000
DDD= day of year
SSSSS= unique second of day
In the case of missing data, the number will be incremented to account for the number
of records expected.

File Naming Conventions

GLAS GLA files will be named as follows:
GLAxx_ccc_tttt_s.dat (for SCF-type file)
GLAxx_ccc_tttt_s.hdf (for HDF-type file)

where xx = Product ID
ccc = Cycle (000-999)
tttt = Track (0000-2600)
s = Segment, (0=none, 1-4 correspond to 50° lat/lon breaks)

GLAS ANC files will be named as follows:

ANCxx_TBD.dat
where xx = Product ID

TBD = To Be Determined

These conventions fulfill the requirement that the type of product is carried in the
filename. It also contains temporal and geographic information which allows for a
gross-level data selection.

Granule Size

Ignoring GLA00, GLA01 is the minimum sized granule; other granules are multiples
of GLA01. Corresponding output files will be opened when a new GLA01 is read.
Granules never break except on a GLA01 transition.

Last saved by purdy - 8 - Last printed 11/22/99 12:54 PM

Prod Rec Size Mbytes Rate Num granules Notes

ID (bytes) / Day / sec Recs /rev /day size

GLA01 -
land

4020 1129 1 / 1 7 4 5 6 3 0 land 46.6%;

 -
ocean

4020 552 1 / 1 3 ocean 53.4%

GLA02 28652 2475.5 1 / 1 1 0.5 7 354

GLA03 1000 86.4 1 / 1 1 0.07 1 8 6 estimate

GLA04 28000 2419.2 1 / 1 1 0.14 2 1210 estimate

GLA05 9636 832.6 1 / 1 1 4 5 6 1 5

GLA06 5236 452.4 1 / 1 1 0.07 1 452

GLA07 63836 5515.4 1 / 1 1 0.5 7 788

GLA08 780 3.4 1 / 20 1 0.07 1 3

GLA09 2948 63.7 1 / 4 1 0.07 1 6 4

GLA10 13812 298.3 1 / 4 1 0.07 1 298

GLA11 568 12.3 1 / 4 1 0.07 1 1 2

GLA12 3004 29.1 1 / 1 1 0.07 1 2 9 Antartic suface only

GLA13 4076 17.6 1 / 1 1 0.07 1 1 8 Guesstimate

GLA14 5416 165.7 1 / 1 1 0.07 1 166 Includes all surface except ocean
or antartic

GLA15 2888 133.2 1 / 1 1 0.07 1 133

Control File Format
The GLAS Control File will be dynamically generated by the Data Management
scheduler and redirected into the GLAS_Exec process. The Data Management system
will have a database of “recipes” which are used to create unique control files for pre-
defined operational scenarios. The standard method of control will be the control file.
It may be generated by the database or by hand. The control file is passed as a
command line argument to GLAS_Exec. The secondary method of control occurs
when GLAS_Exec detects that there is no control file argument passed on the
command line. When no file is specified, GLAS_Exec runs through an interactive
text-based interface which has the same options that could be specified by the control
file. The dual-control method allows for a both tightly-controlled standard processing
and easily customized special-case processing.
Like the GLA_ANC_06 and GLA_ANC_07 datafiles, the Control File is based on the
‘KEYWORD=VALUE’ construct. The construct consists of a line containing a
keyword/value pair delimited by an equals sign (=). The ordering of the keywords is
not relevant but should follow a convention for consistency. Multiple instances of
certain keywords are allowed. Comments may be placed in the control file by
prepending the comment with a # character. Lines should be limited to a maximum of
80 characters.

Required single-instance keywords include:
TEMPLATE_NAME= Name of the control file template.
EXEC_KEY= Unique (per day) execution key
DATE_GENERATED= Date the control file was generated.

Last saved by purdy - 9 - Last printed 11/22/99 12:54 PM

OPERATOR= Operator who generated the control file.
CYCLE= Cycle of data
REV= Revolution of data

Required multiple-instance keywords include:
INPUT_FILE= Input file and version.
OUTPUT_FILE= Output file and version

Optional multiple-instance keywords include:
SURFACE_TYPE= Surface Type to Process (for all ATBDs)
L1A_PROCESS= L1A Process to Execute
WAVEFORM_PROCESS= Waveform Process to Execute (or scenario)
ATMOSPHERE_PROCESS= Atmosphere Process to Execute (or scenario)
ELEVATION_PROCESS= Elevation Process to Execute (or scenario)

Filenames and versions included in the Control File are generated by the scheduler
via a pre-defined recipe. File naming is currently TBD, but a requirement for naming
is that output names may be uniquely generated from input names.
Additionally, pre-defined, subsystem-specific indentifiers may specify which
processes are executed, rather than a verbose list of processes. The SURFACE_TYPE
keyword specifies over what type of surface processing should occur. The default is
all surfaces. Keywords and values are not case-specific (they will be converted to all
lower case during parsing) but it is recommended that, for consistency, keywords be
entered in upper case.

Control File Template

#
These are comments which are skipped by the parser
#
CONTROL_FILE_NAME= Name
EXEC_KEY= Key
DATE_GENERATED= Date
OPERATOR= Name
CYCLE= Cycle
REV= Rev
INPUT_FILE= Input_File File_Version
OUTPUT_FILE= Output_File File_Version
SURFACE_TYPE= Surface Type
L1A_PROCESS= L1A Process or Scenario
WAVEFORM_PROCESS= WF Process or Scenario
ATMOSPHERE_PROCESS= Atm Process or Scenario
ELEVATION_PROCESS= Elev Process or Scenario
END-OF-CONTROL-FILE

Last saved by purdy - 10 - Last printed 11/22/99 12:54 PM

Values for fixed-response keywords are listed below:
Keyword Values

ALL (default)
LAND
OCEAN
SEAICE

SURFACE_TYPE

ICESHEET
ALL
NONE (default)
L_Gen_ALT
L_Gen_ATM
L_Gen_ATT

L1A_PROCESS

L_Gen_ENG
ALL
NONE (default)
W_Assess
W_DetGeoSurTyp

WAVEFORM_PROCESS

W_CalcOtherCh
ALL
NONE (default)
A_interp_pod
A_interp_met
A_mbscs
A_cal_cofs
A_ir_bscs
A_g_bscs
A_avg_bscs
A_cld_lays
A_pbl_aer_lays
A_aer_lays
A_cld_opt_prop

ATMOSPHERE_PROCESS

A_aer_opt_prop
ALL
NONE (default)
E_CalcLoadTD
E_CalcOceanTD
E_CalcEarthTD
E_CalcPoleTD
E_GetGeoid
E_CalcTrop
E_IntrpPOD
E_CalcStdIR
E_CalcLdIR
E_CalcOcIR
E_CalcSiIR
E_CalcIsIR

ELEVATION_PROCESS

E_CalcStdSp

Last saved by purdy - 11 - Last printed 11/22/99 12:54 PM

Sample L1A-Only Control File
#
#Sample Control File which only runs L1A Processes
#
TEMPLATE_NAME= L1A_AND_PARTIAL_WF_CONTROL_FILE
EXEC_KEY= 000012
DATE_GENERATED= 26-January-1999
OPERATOR= jlee
CYCLE= 01
REV= 2000
SURFACE_TYPE= ALL
INPUT_FILE= anc04_01_2000_0.dat 2
INPUT_FILE= anc05_01_2000_0.dat 1
INPUT_FILE= gla00_01_2000_0.dat 1
OUTPUT_FILE= anc06_01_2000_0.dat 2
OUTPUT_FILE= gla01_01_2000_0.dat 2
OUTPUT_FILE= gla02_01_2000_0.dat 2
OUTPUT_FILE= gla03_01_2000_0.dat 2
OUTPUT_FILE= gla04_01_2000_0.dat 2
L1A_PROCESS= ALL
WAVEFORM_PROCESS= W_ASSESS
WAVEFORM_PROCESS= W_DETGEOSURTYP
END-OF-CONTROL-FILE
#
End of Control File
#

ANC06 Definition and Format
A GLA ANC 06 file will be generated for each execution of the GLAS_Exec. The
file will contain processing information and status, error messages, QA data, and data
required to generate the GLAS product metadata. The GLA ANC06 will be opened
and initialized by GLAS_Exec. The GLA ANC 06 file is an ASCII file and the
contents are in keyword = value format..
A full list of acceptable keywords will be documented at a later date. The following
list is those keywords defined for the v0 delivery:
VERSION= Version of GLAS_Exec components
 {All acceptable Control file keywords}
ERROR= Number, Type, Message
GLAS_EXEC_STATUS= Type, Message
L1A_STATUS= Type, Message
WF_STATUS= Type, Message
ATM_STATUS= Type, Message
ELEV_STATUS= Type, Message
GLAS_EXEC_ SUMMARY = Type, Message
L1A_SUMMARY= Type, Message
WF_ SUMMARY = Type, Message
ATM_ SUMMARY = Type, Message
ELEV_ SUMMARY = Type, Message

Last saved by purdy - 12 - Last printed 11/22/99 12:54 PM

Sample ANC06 File
VERSION = 0 GLAS_EXEC V0.1
VERSION = 0 PLATFORM_LIB V0
VERSION = 0 CIO_LIB V0
VERSION = 0 IO_LIB V0.2
VERSION = 0 CNTL_LIB V0.6
VERSION = 0 L1A_LIB V0.1
VERSION = 0 WAVEFORM_LIB V0.1
VERSION = 0 ATMOSPHERE_LIB V0.1
VERSION = 0 ELEVATION_LIB V0.1
CONTROL = 0 DATE_OF_RUN=29-March-1999 06:28:12
CONTROL = 0
TEMPLATE_NAME=L1A_AND_PARTIAL_WF_CONTROL_FILE
CONTROL = 0 EXEC_KEY=000012
CONTROL = 0 DATE_GENERATED=26-January-1999
CONTROL = 0 OPERATOR=jlee
CONTROL = 0 CYCLE=01
CONTROL = 0 REV=2000
CONTROL = 0 SURFACE_TYPE=ALL
CONTROL = 0 INPUT_FILE=gla00_01_2000_0.dat 1
CONTROL = 0 INPUT_FILE=anc07_01_2000_0.dat 1
CONTROL = 0 OUTPUT_FILE=gla01_01_2000_0.dat 2
CONTROL = 0 OUTPUT_FILE=gla02_01_2000_0.dat 2
CONTROL = 0 OUTPUT_FILE=gla03_01_2000_0.dat 2
CONTROL = 0 OUTPUT_FILE=gla04_01_2000_0.dat 2
CONTROL = 0 OUTPUT_FILE=anc06_01_2000_0.dat 2
CONTROL = 0 L1A_PROCESS=ALL
EXEC_STATUS = 0 GLAS_Exec Start of Processing
L1A_STATUS = 0 L1A Started Processing
ERROR = 123 2798 Frame checksum error
ERROR = 124 1078 Previous GLA00 Record Missing
EXEC_STATUS = 1500 End of Processing

GLAS_Exec will write the VERSION of software executed and CONTROL inputs to
the GLA ANC 06 file. GLAS_Exec will write STATUS messages indicating start
and end of processing and number of records processed.
Error messages generated during processing are written to the GLA ANC 06 file. The
GLAS_Error subroutine will call the WriteANC06 subroutine. During wrap-up the
total number of errors shall be written to the GLA ANC 06 file.
Since the GLA ANC 06 file is in ASCII it can be read with any text editor or word
processor. Additionally users can use grep to search for keywords to generate reports
of specific interest, i.e., ERROR reports. Standard scripts can be created that will
generate subsets of the GLA ANC 06.
The ATBD Managers will write messages to GLA ANC 06 indicating start of
processing.

ANC07 Definition and Format
ANC07 is the constants file. It will be read to intialize those constants which may be
changed without requiring a code change.
ANC07 will use the same keyword/value format as the Control file. A full list of
acceptable keywords will be documented at a later date. A sample ANC07 file
follows:

Sample ANC07 File
#

Last saved by purdy - 13 - Last printed 11/22/99 12:54 PM

GLAS v0 ANC07 Constants File
#
ANC07_VERSION = v0.1 02 May 1999
#
Constants Mod Entries
#
BEG_OF_CONSTANTS_MOD = ---
--
#
Set Number of Constants
#
NUM_CONSTANTS = 6
#
GLA01 Constants
#
gi_GLA01_Main_ID = 22342
gi_GLA01_Land_ID = 19543
gi_GLA01_Ocean_ID = 20311
#
Atmospheric Profile Parameters
#
gd_binsize = 76.8
#
Elev Parameters
#
gd_ellipAe = 6378136.49
gd_ellipF = 298.25645
#
END_OF_CONSTANTS_MOD = ---
--
#
GLAS_Error Mod Entries
#
BEG_OF_GLASError_MOD = ---
--
#
Set Number of Errors
#
NUM_ERRORS=21
#
ERROR=10000 Error Opening File for Input: 3 1
ERROR=10100 Error Opening File for Output: 3 1
ERROR=10200 Error Closing File: 3 1
ERROR=10300 Error Reading File: 3 1
ERROR=10400 Error Writing File: 3 1
ERROR=10700 Multiple single-instance keywords: 1 1
ERROR=10800 Multiple-instance keyword limit exceeded: 3 1
ERROR=10900 Unrecognized line in control file: 1 1
ERROR=11000 Unknown value in keyword/value pair: 1 1
ERROR=11100 I/O Error Opening Control File: 3 1
ERROR=11200 I/O Error Reading Control File: 3 1
ERROR=11300 Specified Unknown File Type: 1 1
ERROR=11400 GLA01 Unknown Record Type 3 1
ERROR=20200 Error reading PAD data Eng data 3 2
ERROR=20304 Error reading PAD data Eng data 3 1
ERROR=30400 Error in Waveform Assess 3 1
ERROR=35600 Error in Waveform Calc 3 1
ERROR=45000 Error calculating backscatter 3 3
ERROR=49444 Error calculating Backscatter Profile 3 1
ERROR=50000 Error Calculating tides 3 10
ERROR=59999 Error in Geoids module 3 4
#

Last saved by purdy - 14 - Last printed 11/22/99 12:54 PM

END_OF_GLASError_MOD = ---
--
#
END_OF_ANC07_FILE = --
--

Fortran/Sub-ATBD Interface
Definitions:
(1) algorithm data (units for algorithm use) are that data which are in a form most

favorable for display and calculation;
(2) product data (units for I/O) are that data which are in a form most favorable for

machine independence and storage efficiency.

A simplified, data-specific description of the processing flow from input SCF file to
output SCF file follows:
(1) Data are stored in GLAS SCF files in a product form.
(2) The GLAS_Exec read routine will call a product-specific Fortran 90 routine. This
routine calls the f90 intrinsic fread to read the product record. The product record is
stored in a public structure in a product-specific module (GLAxx_mod.f90).
(3) The f90 product structure will then be converted into an f90 algorithm structure.
The conversion is a simple data type and unit transformation – there is a one-to-one
correspondence between the variables described in each product definition and the
f90 algorithm structure.
(4) The resultant f90 algorithm structure is stored in a public structure in a product-
specific module (GLAxx_mod.f90).
(5) All “pass-thru” data from input product(s) are copied to the output product.
(6) In a reprocessing scenario, when using same-type input and output products, data
are copied from input product to output product.
(7) Required input and output data structures are accessed by the appropriate
Subsystem Manager.
(8) Data which need further conversion in order to be usable by the sub-ATBDs are
converted and placed in local variables. (This includes such conversions as unpacking
flags and adding offsets or reference values).
(9)The manager passes (via an argument list) data to/from each sub-ATBD. Sub-
ATBDs only have access to the data they need, not the whole data structure.
Additionally, data are passed primarily from the output structure. Those data not
available from the output structure are passed from the input structure. This method
of passing data, along with the processes described in steps 5 and 6, allow the Sub-
ATBDs to be coded without regard to processing or reprocessing scenarios.
(10) Data are processed by the appropriate Sub-ATBDs.
(11) Local variables which need further conversion in order to be consistent with the
output structure are converted. (This includes such conversions as packing flags and
subtracting offsets or reference values).
 (12) The algorithm f90 structure will be converted into a product f90 structure. The
conversion is a simple data type and unit transformation – there is a one-to-one

Last saved by purdy - 15 - Last printed 11/22/99 12:54 PM

correspondence between the variables described in each product definition and the
f90 algorithm structure.
(13) The product f90 structure will be written by a product-specific Fortran90 routine
using the fwrite intrinsic.
The benefit of this method is that the I/O and scaling routines are very language-
independent and that scaling/unscaling is handled inside the I/O routines so that both
internal and external programmers can simply call the I/O routine and end up with a
structure of algorithm data.

Last saved by purdy - 16 - Last printed 11/22/99 12:54 PM

types_mod
(algorithm variable definitions)

kinds_mod
(variable kinds)

GLAxx_prod_mod
(product variable declarations)

GLAxx_alg_mod
(algorithm variable declarations)

GLAxx_mod
ReadGLAxx
WriteGLAxx

A2P_GLA_mod
(algorithm to product conversion)

P2A_GLAxx_mod
(product to algorithm conversion)

xxx_Mgr_mod
(subATBD Manager)

subATBD Stub subATBD Stub subATBD Stub subATBD Stub

definitions

public
data structures

arguments

Last saved by purdy - 17 - Last printed 11/22/99 12:54 PM

Fortran Subroutine Interface Mechanism
Subsystems and Managers use f90 modules to define data types. Modules do not
create global data except in special circumstances dictated by GLAS_Exec. Structures
are defined with the type–endtype construct and variables are defined with the same
type of constructs used by kindsmod. The benefits of this are that even though
variables are passed from Manager to ATBD via the argument list, the use of modules
minimizes the risk of mismatched data types between the Manager and ATBD. We
get the benefits of :

• Guaranteeing local variables via the argument list construct
• Ability to declare INTENT(IN) and INTENT(OUT)
• Ability to change the variable type or dimensions in one place and have

this change automatically propagate to all routines which use the variable.
• Less chance of errors since data types are defined in only place.

Source Files
Version 0 source files consist of a group of top level files which are grouped together
with the main program GLAS_Exec.f90, and a lower level set of files grouped
together by functionality and separated as libraries.

Top Level files
The Top level files consist of the sub-Managers, the read and write modules and the
wrap-up modules. They are located in the /src/GLAS_Exec directory and are the
following:

GLAS_Exec.f90 - The main program
L1Amgr_mod.f90 - Sub-manager for L1A processing
WFMgr_mod.f90 - Sub-manager for waveform processing
AtmMgr_mod.f90 - Sub-manager for Atmosphere processing
ElevMgr_mod.f90 - Sub-manager for elevation processing
OpenFiles_mod.f90 - Opens the input files specified by the control file
ReadAnc_mod.f90 - Reads the ancillary file
Readdata_mod.f90 - Reads the input data
WriteL1A_mod.f90 - Writes products GLA01 – GLA04
WriteWF_mod.f90 - Writes product GLA05
WriteAtm_mod.f90 - Write product GLA06 – GLA11
WriteElev_mod.f90 - Writes products GLA12 – GLA15
CloseFiles_mod.f90 - Closes all files
MainWrap_mod.f90 - Writes summary data and completes processing

A makefile is contained in this directory. It creates the executable for the software,
linking in the libraries described below.

Last saved by purdy - 18 - Last printed 11/22/99 12:54 PM

Lower Level Files, Libraries
Libraries are the key to making GLAS_Exec and related I-SIPS software consistent
and maintainable. Each library directory contains a makefile that creates the library.
The libraries are in subdirectories under the /src (source) directory and are listed in
the appendix. This section identifies each library and the contents thereof:

libcio.a – Generic C routines for reading and writing data.
cappend.c positions file pointer to EOF on opened file.
cclose.c closes and open file.
cnlines.c counts number of lines in ASCII file.
cfsize.c counts number of bytes in file.
copen.c opens a file for specified activity.
cread.c reads bytes from a file.
crewind.c rewinds an open file.
cseek.c positions file pointer on opened file
cwrite.c writes bytes to a file.
vers_cio_mod.f90 Version information for library

libprod.a –F90 routines for reading and/or writing each GLA/ANC file.
GLAxx_prod_mod.f90 GLAXX PRODUCT structures.
GLAxx_alg_mod.f90 GLAxx ALGORITHM structures.
GLAxx_mod.f90 reads and write GLAXX data.
GLAxx_scal_mod.f90 Initializes GLAxx scales

GLAxxX PRODUCT to ALGORITHM
conversion.

GLAxx ALGORITHM to PRODUCT
conversion.
GLAxx_Pass_mod.f90 Handles GLAxx Pass-Thru’s.
vers_io_mod.f90 Version information for library

libcntrl.a-f90 routines for control file and interface handling
centertext_mod.f90 Centers string on 80 column line.
doubleline_mod.f90 Prints 80 column double line (=)
exec_flag_mod.f90 Module which defines exec_flags
finfo_mod.f90 Module which defines file control structures
getans.f90 Gets single-key input from user
keyval_mod.f90 Defines keyword-value data type
multimenu_mod.f90 Gets user choices from a multiple-option menu
parse_keyval_mod.f90 Parses keyword-value from a string
singleline_mod.f90 Prints 80 column single line (-)

Last saved by purdy - 19 - Last printed 11/22/99 12:54 PM

strtrim.f90 Strips spaces from a string.
tolower.f90 Converts string to lower case
toupper.f90 Converts string to upper case
writebanner_mod.f90 Writes informative banner
vers_cntrl_mod.f90 Version information for library

libfile-Generic file routines
OpenFInFile.f90 Opens a Fortran90 style input file.
OpenFOutFile.f90 Opens a Fortran90 style output file.
OpenCInFile.f90 Opens a C style input file.
OpenCOutFile.f90 Opens a C style output file.
vers_file_mod.f90 Version information for library

libanc-Ancillary file routines
ANC07_mod.f90 ANC07 file reader.
vers_anc_mod.f90 Version information for library

libtime-Misc time conversion routines
sctime_2i4_to_d_mod.f90 2 i4b to dp
sctime_d_to_2i4_mod.f90 dp to 2 i4b
sctime_i5_to_d_mod.f90 i4 to dp
sctime_d_to_i5_mod.f90 dp to i5.
vers_time_mod.f90 Version information for library

liberr-Error handling routines
GLASError_mod.f90 Error Handling
ANC06_mod.f90 ANC06 file writer.
vers_err_mod.f90 Version information for library

libplatform.a-platform-specific routines
kinds_mod.f90 Kinds module
types_mod.f90 Types module
constants_mod.f90 Constants module.
vers_platform_mod.f90 Version information for library

libl1a.a – L1A algorithm routines
L_Alt.f90 Calculates altitude products
L_Atm.f90 Calculates atmosphere products

libatm.a - Atmosphere algorithm routines
A_intrp_geoloc_mod.f90 Interpolation for POD
A_interp_met_mod.f90 Interpolation for MET

Last saved by purdy - 20 - Last printed 11/22/99 12:54 PM

A_mbscs_mod.f90 Calculates backscatter profiles
A_cal_cofs_mod.f90 Calculates calibration coefficients
A_ir_bscs_mod.f90 Calculates cross section profiles for 1064
A_g_bscs_mod.f90 Calculates cross section profiles for 532
A_avg_bscs_mod.f90 Calculates backscatter averages
A_cld_lays_mod.f90 Calculates cloud layers
A_pbl_lay_mod.f90 Calculates PBL layer
A_aer_lays_mod.f90 Calculates elevated aerosol layers
A_aer_opt_prop_mod.f90 Calculates aerosol optical properties
A_cld_opt_prop_mod.f90 Calculates cloud optical properties

libelev.a – Elevation algorithm routines
E_calcLoadTD_mod.f90 Calculates load tide
E_calcOceanTD_mod.f90 Calculates ocean tide
E_calcEarthTD_mod.f90 Calculates earth tide
E_calcPoleTD_mod.f90 Calculates pole tide
E_getgeoid_mod.f90 Calculates geoid height
E_calcTrop_mod.f90 Calculates tropospheric correction
E_calcRange_mod.f90 Calculates standard instrument range
E_calcRngOff_mod.f90 Calculate instrument range offsets
C_intrpPod_mod.f90 Interpolates for POD
C_calcSploc_mod.f90 Calculates elevation and spot location
E_atmQF_mod.f90 Calculates atmosphere quality flags
E_calcSlope_mod.f90 Calculates slope and Roughness
E_calcRefl_mod.f90 Calculates reflectance
E_chkReg_mod.f90 Checks the region
E_calcRegParm_mod.f90 Calculates region parameters

libwf.a – Waveform algorithm routines
W_Assess_mod.f90 Assessment of waveforms
W_CalcOtherCh_mod.f90 Calculates other waveform characteristics
W_DetGeoSurfTyp_mod.f90 Determines waveform geolocation and surface

type

Last saved by purdy - 21 - Last printed 11/22/99 12:54 PM

Library Dependencies

Since all of our Fortran code is developed with modules, there are specific
dependency requirements imposed since the .mod files need to be linked at compile-
time rather than link time. The following diagram shows the library dependencies.

platform_lib

time_lib

cio_lib

err_lib

cntrl_lib

file_libanc_libprod_lib

Last saved by purdy - 22 - Last printed 11/22/99 12:54 PM

Appendix

Directory structure (Top Level files and Libraries)
The main directories where source files and libraries are located are listed below.

/src
- GLAS_Exec (Top level files)
- L1a_lib (Submanager library)
- Atm_lib “
- Wf_lib “
- Elev_lib “
- L1a (Level 1A source)
- Waveforms (waveform source)
- Atmosphere (atmosphere source)
- Elevations (elevation source)
- Modules (Fortran modules)
- Common_libs

- Anc_lib
- Cio_lib
- Cntrl_lib
- Err_lib
- File_lib
- Platform_lib
- Prod_lib
- Time_lib

